Step 1 of 2
Quisque eget sagittis purus. Nunc sagittis nisi magna, in mollis lectus ullamcorper in. Sed sodales risus sed arcu efficitur, id rutrum ligula laoreet. Quisque molestie purus sed consequat fermentum. Fusce ut lectus lobortis, viverra sem nec, rhoncus justo. Phasellus malesuada, ipsum ac varius euismod, purus nulla volutpat nunc, eu fermentum odio justo porttitor libero. Quisque viverra arcu nibh, at facilisis tortor ornare non. Etiam id porttitor arcu, ut eleifend nisi. Ut sit amet enim eu lacus egestas tristique eleifend sit amet lectus.
Step 2 of 2
Nam consectetur iaculis dui ac tempor. Nulla a nisi nunc. Suspendisse semper mauris pretium, suscipit sapien nec, hendrerit justo. In hac habitasse platea dictumst. Praesent laoreet gravida posuere. Maecenas interdum ante nec libero pellentesque, sit amet commodo nisl auctor. Phasellus facilisis, lorem et fringilla varius, mi felis rutrum diam, quis ultricies mauris nisl nec nisl. Fusce lacinia tincidunt urna sit amet vehicula. Proin sed dui vitae nisi vehicula imperdiet eu a lorem. Praesent at ante nibh. Quisque id elit ac purus vestibulum auctor. Etiam ac tincidunt velit. Aenean accumsan risus tempor tincidunt luctus.
Chapter 1.3, Problem 13E is solved.
Get Solutions
Step 1
Given Matrix, A and vector, $\bf{b}$:
\[\begin{array}{l}A = \left[ {\begin{array}{*{20}{c}}1&{ - 4}&2\\0&3&5\\{ - 2}&8&{ - 4}\end{array}} \right]\\\\{\bf{b}} = \left[ {\begin{array}{*{20}{c}}3\\{ - 7}\\{ - 3}\end{array}} \right]\end{array}\]We have to determine, whether the vector $\bf{b}$ is a linear combination of vectors formed from the columns of the matrix A.
Step 2: Form the vectors from the columns of matrix A
\[\begin{array}{l}{{\bf{a}}_{\bf{1}}} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right]\\\\{{\bf{a}}_2} = \left[ {\begin{array}{*{20}{c}}{ - 4}\\3\\8\end{array}} \right]\\\\{{\bf{a}}_3} = \left[ {\begin{array}{*{20}{c}}2\\5\\{ - 4}\end{array}} \right]\end{array}\]
Step 3: Augmented Form
Convert the vectors ($\bf{a_1, a_2, a_3}$ and $\bf{b}$) into augmented form.\[\begin{array}{l}\left[ {\begin{array}{*{20}{c}}{{{\bf{a}}_{\bf{1}}}}&{{{\bf{a}}_{\bf{2}}}}&{{{\bf{a}}_{\bf{3}}}}&{\bf{b}}\end{array}} \right]\\\\\left[ {\begin{array}{*{20}{c}}1&{ - 4}&2&3\\0&3&5&{ - 7}\\{ - 2}&8&{ - 4}&{ - 3}\end{array}} \right]\end{array}\]
Step 4: Convert to echelon form
\[\begin{array}{l}\left[ {\begin{array}{*{20}{c}}1&{ - 4}&2&3\\0&3&5&{ - 7}\\{ - 2}&8&{ - 4}&{ - 3}\end{array}} \right]\\\\~\left[ {\begin{array}{*{20}{c}}1&{ - 4}&2&3\\0&3&5&{ - 7}\\{ - 2 + 2\left( 1 \right)}&{8 + 2\left( { - 4} \right)}&{ - 4 + 2\left( 2 \right)}&{ - 3 + 2\left( { - 3} \right)}\end{array}} \right]\\\\~\left[ {\begin{array}{*{20}{c}}1&{ - 4}&2&3\\0&3&5&{ - 7}\\0&0&0&3\end{array}} \right]\end{array}\]
Step 5: Equivalent system of Equations
\[\begin{array}{l}{x_1} - 4{x_2} + 2{x_3} = 3\\\,\,\,\,\,\,\,\,\,\,3{x_2} + 5{x_3} = - 7\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 = 3\end{array}\]
Step 6: ANSWER
From the last, row we can see that the system has no solution, as $0 \ne 3$,
The vector $\bf{b}$ is not a linear combination of vectors formed by columns of matrix A