Step 1 of 2
Quisque eget sagittis purus. Nunc sagittis nisi magna, in mollis lectus ullamcorper in. Sed sodales risus sed arcu efficitur, id rutrum ligula laoreet. Quisque molestie purus sed consequat fermentum. Fusce ut lectus lobortis, viverra sem nec, rhoncus justo. Phasellus malesuada, ipsum ac varius euismod, purus nulla volutpat nunc, eu fermentum odio justo porttitor libero. Quisque viverra arcu nibh, at facilisis tortor ornare non. Etiam id porttitor arcu, ut eleifend nisi. Ut sit amet enim eu lacus egestas tristique eleifend sit amet lectus.
Step 2 of 2
Nam consectetur iaculis dui ac tempor. Nulla a nisi nunc. Suspendisse semper mauris pretium, suscipit sapien nec, hendrerit justo. In hac habitasse platea dictumst. Praesent laoreet gravida posuere. Maecenas interdum ante nec libero pellentesque, sit amet commodo nisl auctor. Phasellus facilisis, lorem et fringilla varius, mi felis rutrum diam, quis ultricies mauris nisl nec nisl. Fusce lacinia tincidunt urna sit amet vehicula. Proin sed dui vitae nisi vehicula imperdiet eu a lorem. Praesent at ante nibh. Quisque id elit ac purus vestibulum auctor. Etiam ac tincidunt velit. Aenean accumsan risus tempor tincidunt luctus.
Chapter 1.3, Problem 25E is solved.
Get Solutions
Step 1
Given matrix and vector:\[\begin{array}{l}A = \left[ {\begin{array}{*{20}{c}}1&0&{ - 4}\\0&3&{ - 2}\\{ - 2}&6&3\end{array}} \right]\\\\{\bf{b}} = \left[ {\begin{array}{*{20}{c}}4\\1\\{ - 4}\end{array}} \right]\end{array}\]Also given that:\[W = {\rm{Span}}\left\{ {{{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}},{{\rm{a}}_{\rm{3}}}} \right\}\]For the above matrix and vector we have to find the followings:
(a) Is $b$ in $\left\{ {{{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}},{{\rm{a}}_{\rm{3}}}} \right\}$? How many vectors are in $\left\{ {{{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}},{{\rm{a}}_{\rm{3}}}} \right\}$
(b) Is $b$ in $W$? How many vectors are in $W$?
(c) Show that $a_1$ is in $W$.
Step 2: (a)
Given Domain:\[\left\{ {{{\bf{a}}_{\bf{1}}}{\rm{,}}{{\bf{a}}_{\bf{2}}},{{\bf{a}}_{\bf{3}}}} \right\} = \left\{ {\left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}0\\3\\6\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 4}\\{ - 2}\\3\end{array}} \right]} \right\}\]As we can see that the vector $b$ is not one of the vectors in the given domain, hence $b$ is not in $\left\{ {{{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}},{{\rm{a}}_{\rm{3}}}} \right\}$. We can also notice that there are three vectors in $\left\{ {{{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}},{{\rm{a}}_{\rm{3}}}} \right\}$, that are, \[{{\bf{a}}_{\bf{1}}}{\rm{,}}{{\bf{a}}_{\bf{2}}},\,{\rm{and}}\,\,{{\bf{a}}_{\bf{3}}}\]
Step 3: (b)
The vector $b$ will be in $W$, if $b$ is a linear combination of three vectors ${{\bf{a}}_{\bf{1}}}{\rm{,}}{{\bf{a}}_{\bf{2}}},\,{\rm{and}}\,\,{{\bf{a}}_{\bf{3}}}$. Let us write the corresponding system of Equations. \[\begin{array}{l}{x_1}{{\bf{a}}_{\bf{1}}} + {x_2}{{\bf{a}}_2} + {x_3}{{\bf{a}}_3} = {\bf{b}}\\{x_1}\left[ {\begin{array}{*{20}{c}}1\\0\\{ - 2}\end{array}} \right] + {x_2}\left[ {\begin{array}{*{20}{c}}0\\3\\6\end{array}} \right] + {x_3}\left[ {\begin{array}{*{20}{c}}{ - 4}\\{ - 2}\\3\end{array}} \right] = {\bf{b}}\end{array}\]
Step 4: The Augmented matrix
\[\begin{array}{l}M = \left[ {\begin{array}{*{20}{c}}1&0&{ - 4}&4\\0&3&{ - 2}&1\\{ - 2}&6&3&{ - 4}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}1&0&{ - 4}&4\\0&3&{ - 2}&1\\0&6&{ - 5}&4\end{array}} \right]::\,{R_3} = {R_3} + 2{R_1}\\ = \left[ {\begin{array}{*{20}{c}}1&0&{ - 4}&4\\0&3&{ - 2}&1\\0&0&{ - 1}&2\end{array}} \right]::\,\,{R_3} = {R_3} - 2{R_2}\end{array}\]As we can see that the above matrix is in echelon form and has a solution. So the vector $b$ will be in $W$.
Step 5: The Row Reduced Echelon Form
\[\begin{array}{l}M = \left[ {\begin{array}{*{20}{c}}1&0&{ - 4}&4\\0&3&{ - 2}&1\\0&0&{ - 1}&2\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}1&0&0&4\\0&3&0&{ - 3}\\0&0&{ - 1}&2\end{array}} \right]::\,\,{R_2} = {R_2} - 2{R_3};\,\,{R_1} = {R_1} - 4{R_3}\\ = \left[ {\begin{array}{*{20}{c}}1&0&0&4\\0&1&0&{ - 1}\\0&0&{ - 1}&2\end{array}} \right]::\,\,{R_2} = {R_2}/3\end{array}\]From the above reduced echelon from, we find three scalers as $\left( {4, - 1,2} \right)$:\[4{{\bf{a}}_{\bf{1}}} - 1{{\bf{a}}_2} + 2{{\bf{a}}_3} = {\bf{b}}\]Now if we change the vector $b$, there can be another combination of these scalars. So there can be infinite vectors in W for different values of scalar combinations.
Step 6: (c)
From the above set, if we choose three scalars such that ${x_1} = 1,\,{x_2} = 0,{x_3} = 0$. Then,:\[\begin{array}{l}{x_1}{{\bf{a}}_{\bf{1}}} + {x_2}{{\bf{a}}_2} + {x_3}{{\bf{a}}_3} = {\bf{b}}\\\left( 1 \right){{\bf{a}}_{\bf{1}}} + \left( 0 \right){{\bf{a}}_2} + \left( 0 \right){{\bf{a}}_3} = {\bf{b}}\\{{\bf{a}}_{\bf{1}}} = {\bf{b}}\end{array}\]Thus ${{\bf{a}}_{\bf{1}}}$ lies in $W$.
ANSWER
(a) $b$ is not in $\left\{ {{{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}},{{\rm{a}}_{\rm{3}}}} \right\}$. There are three such vectors.
(b) $b$ is in $W$
(c) $a_1$ is in $W$.