Linear Algebra and Its Applications, 5th Edition

Linear Algebra and Its Applications, 5th Edition

Authors: David C. Lay, Steven R. Lay, Judi J. McDonald

ISBN-13: 978-0321982384

We have solutions for your book!

See our solution for Question 15E from Chapter 2.4 from Lay's Linear Algebra and Its Applications, 5th Edition.

Problem 15E

Chapter:
Problem:
Let If A11 is invertible, then the matrix is called the Schur complement of A11. Likewise, if A22 is invertible, the matrix is called the Schur complement of A22. Suppose A11 is invertible. Find X and Y such that

Step-by-Step Solution

Given Information
We are given that $A_{11}$ is invertible. We have to find X and Y such that \[ \left[ \begin{array} { c c } { A _ { 11 } } & { A _ { 12 } } \\ { A _ { 21 } } & { A _ { 22 } } \end{array} \right] = \left[ \begin{array} { c c } { I } & { 0 } \\ { X } & { I } \end{array} \right] \left[ \begin{array} { c c } { A _ { 11 } } & { 0 } \\ { 0 } & { S } \end{array} \right] \left[ \begin{array} { c c } { I } & { Y } \\ { 0 } & { I } \end{array} \right] \]

Step-1:
Using the matrix properties \[\begin{array}{*{20}{l}} {I\cdot A = A}\\ {0\cdot A = 0}\\ {A + 0 = A} \end{array}\] The product of matrices on right hand side: \[\begin{array}{l} \left[ {\begin{array}{*{20}{l}} I&0\\ X&I \end{array}} \right]\left[ {\begin{array}{*{20}{r}} {{A_{11}}}&0\\ 0&S \end{array}} \right]\left[ {\begin{array}{*{20}{l}} I&Y\\ 0&I \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {I{A_{11}} + 0\cdot0}&{I\cdot0 + 0\cdot S}\\ {X{A_{11}} + I\cdot0}&{X\cdot0 + IS} \end{array}} \right]\left[ {\begin{array}{*{20}{l}} I&Y\\ 0&I \end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}} {{A_{11}}}&0\\ {X{A_{11}}}&S \end{array}} \right]\left[ {\begin{array}{*{20}{l}} I&Y\\ 0&I \end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}} {{A_{11}}I + 0\cdot0}&{{A_{11}}Y + 0\cdot I}\\ {X{A_{11}}I + S\cdot0}&{X{A_{11}}Y + SI} \end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}} {{A_{11}}}&{{A_{11}}Y}\\ {X{A_{11}}}&{X{A_{11}}Y + S} \end{array}} \right] \end{array}\] Thus we get: \[ \left[ \begin{array} { l l } { A _ { 11 } } & { A _ { 12 } } \\ { A _ { 21 } } & { A _ { 22 } } \end{array} \right] = \left[ \begin{array} { c c } { A _ { 11 } } & { A _ { 11 } Y } \\ { X A _ { 11 } } & { X A _ { 11 } Y + S } \end{array} \right] \] Upon equating the elements, we get: \[ \begin{array} { l } { A _ { 12 } = A _ { 11 } Y } \\ { A _ { 21 } = X A _ { 11 } } \end{array} \]

Step-3: Solve the Equations
From $A _ { 21 } = X A _ { 11 }$,

\[\begin{array}{l} {A_{21}} = X{A_{11}}\\ {A_{21}}A_{11}^{ - 1} = \left( {X{A_{11}}} \right)A_{11}^{ - 1}\\ {A_{21}}A_{11}^{ - 1} = X\left( {{A_{11}}A_{11}^{ - 1}} \right)\\ {A_{21}}A_{11}^{ - 1} = XI\\ {A_1}A_{11}^{ - 1} = X \end{array}\] From $A _ { 12 } = A _ { 11 } Y$

\[\begin{array}{l} {A_{12}} = {A_{11}}Y\\ A_{11}^{ - 1}{A_{12}} = A_{11}^{ - 1}\left( {{A_{11}}Y} \right)\\ A_{11}^{ - 1}{A_{12}} = \left( {A_{11}^{ - 1}{A_{11}}} \right)Y\\ A_{11}^{ - 1}{A_{12}} = IY\\ A_{11}^{ - 1}{A_{12}} = Y \end{array}\] Therefore,

\[ \begin{array} { l } { X = A _ { 21 } A _ { 11 } ^ { - 1 } } \\ { Y = A _ { 11 } ^ { - 1 } A _ { 12 } } \end{array} \]