Linear Algebra and Its Applications, 5th Edition

Linear Algebra and Its Applications, 5th Edition

Authors: David C. Lay, Steven R. Lay, Judi J. McDonald

ISBN-13: 978-0321982384

We have solutions for your book!

See our solution for Question 4E from Chapter 2.6 from Lay's Linear Algebra and Its Applications, 5th Edition.

Problem 4E

Chapter:
Problem:
0

Step-by-Step Solution

Given Information
We have to construct the consumption matrix for this economy, and determine the production levels needed to satisfy a final demand of 18 units for manufacturing, 18 units for agriculture, and 0 units for services.

Step-1: Tabulated data
Purchased From Input Consumed per unit output
Manufacturing Agriculture Services
Manufacturing 0 10 0 60 0 60
Agriculture 0 30 0 20 0.00
Services 0.30 010 0.10


Step-2:The consumption matrix matrix
Generate the consumption matrix: \[ C = \left[ \begin{array} { c c c } { .10 } & { .60 } & { .60 } \\ { .30 } & { .20 } & { 0 } \\ { .30 } & { .10 } & { .10 } \end{array} \right] \]

Step-3: The production levels needed
The solution of the system $X = C X + d$ gives production levels needed to meet a final demand. \[\begin{array}{l} X = CX + d\\ X = CX + d\\ X = CX + d \end{array}\] \[\begin{array}{l} x = {(I - C)^{ - 1}}d\\ x = {\left[ {\begin{array}{*{20}{c}} {0.9}&{ - 0.6}&{ - 0.6}\\ { - 0.3}&{0.8}&0\\ { - 0.3}&{ - 0.1}&{0.9} \end{array}} \right]^{ - 1}}\left[ {\begin{array}{*{20}{c}} {18}\\ {18}\\ 0 \end{array}} \right] \end{array}\]

Step-4: The Augmented Matrix
\[\begin{array}{l} \left[ {\begin{array}{*{20}{c}} {I - C}&b \end{array}} \right] \to \left[ {\begin{array}{*{20}{c}} {0.9}&{ - 0.6}&{ - 0.6}&{18}\\ { - 0.3}&{0.8}&0&{18}\\ { - 0.3}&{ - 0.1}&{0.9}&0 \end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}} 9&{ - 6}&{ - 6}&{180}\\ { - 3}&8&0&{180}\\ { - 3}&{ - 1}&9&0 \end{array}} \right]::\left\{ {\begin{array}{*{20}{l}} {{R_1} \to 10{R_1}}\\ {{R_2} \to 10{R_2}}\\ {{R_3} \to 10{R_3}} \end{array}} \right\}\\ = \left[ {\begin{array}{*{20}{c}} 9&{ - 6}&{ - 6}&{180}\\ { - 3}&8&0&{180}\\ 0&{ - 9}&9&{ - 180} \end{array}} \right]::\left\{ {{R_3} \to {R_3} - {R_2}} \right\}\\ = \left[ {\begin{array}{*{20}{c}} 3&{ - 2}&{ - 2}&{60}\\ { - 3}&8&0&{180}\\ 0&{ - 9}&9&{ - 180} \end{array}} \right]::\left\{ {{R_1} \to \dfrac{1}{3}{R_1}} \right\}\\ = \left[ {\begin{array}{*{20}{c}} 3&{ - 2}&{ - 2}&{60}\\ 0&6&{ - 2}&{240}\\ 0&{ - 9}&9&{ - 180} \end{array}} \right]::\left\{ {{R_2} \to {R_2} + {R_1}} \right\}\\ = \left[ {\begin{array}{*{20}{c}} 3&{ - 2}&{ - 2}&{60}\\ 0&3&{ - 1}&{120}\\ 0&{ - 3}&3&{ - 60} \end{array}} \right]::\left\{ {\begin{array}{*{20}{l}} {{R_2} \to \dfrac{1}{2}{R_2}}\\ {{R_3} \to \dfrac{1}{3}{R_3}} \end{array}} \right\}\\ = \left[ {\begin{array}{*{20}{c}} 3&{ - 2}&{ - 2}&{60}\\ 0&3&{ - 1}&{120}\\ 0&0&2&{60} \end{array}} \right]::\left\{ {{R_3} \to {R_3} + {R_2}} \right\}\\ = \left[ {\begin{array}{*{20}{c}} 3&{ - 2}&{ - 2}&{60}\\ 0&3&{ - 1}&{120}\\ 0&0&1&{30} \end{array}} \right]::\left\{ {{R_3} \to \dfrac{1}{2}{R_3}} \right\}\\ = \left[ {\begin{array}{*{20}{c}} 3&{ - 2}&{ - 2}&{60}\\ 0&3&0&{150}\\ 0&0&1&{30} \end{array}} \right]::\left\{ {{R_2} \to {R_2} + {R_3}} \right\}\\ = \left[ {\begin{array}{*{20}{c}} 3&{ - 2}&0&{120}\\ 0&3&0&{150}\\ 0&0&1&{30} \end{array}} \right]::\left\{ {{R_1} \to {R_1} + 2{R_3}} \right\}\\ = \left[ {\begin{array}{*{20}{c}} 3&{ - 2}&0&{120}\\ 0&1&0&{50}\\ 0&0&1&{30} \end{array}} \right]::\left\{ {{R_2} \to \dfrac{1}{3}{R_2}} \right\}\\ = \left[ {\begin{array}{*{20}{c}} 3&0&0&{220}\\ 0&1&0&{50}\\ 0&0&1&{30} \end{array}} \right]::\left\{ {{R_1} \to {R_1} + 2{R_2}} \right\}\\ = \left[ {\begin{array}{*{20}{c}} 1&0&0&{\dfrac{{220}}{3}}\\ 0&1&0&{50}\\ 0&0&1&{30} \end{array}} \right]::\left\{ {{R_1} \to \dfrac{1}{3}{R_1}} \right\} \end{array}\] Therefore the solution is:

Manufacturing must produce units, agriculture must produce 50 units and service must produce 30 units.