Linear Algebra and Its Applications, 5th Edition

Linear Algebra and Its Applications, 5th Edition

Authors: David C. Lay, Steven R. Lay, Judi J. McDonald

ISBN-13: 978-0321982384

We have solutions for your book!

See our solution for Question 29E from Chapter 4.4 from Lay's Linear Algebra and Its Applications, 5th Edition.

Problem 29E

Chapter:
Problem:
In Exercises 27–30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.

Step-by-Step Solution

Given Information
We are given with following set of polynomial \[ ( 1 - t ) ^ { 2 } , t - 2 t ^ { 2 } + t ^ { 3 } , ( 1 - t ) ^ { 3 } \] We need to find the linear dependence these polynomials using coordinate vectors.

Step-1:
Write the polynomials in standard vector forms: \[\begin{array}{l} {(1 - t)^2} = 1 - 2t + {t^2} = \left[ {\begin{array}{*{20}{c}} 1\\ { - 2}\\ 1\\ 0 \end{array}} \right]\\ t - 2{t^2} + {t^3} = \left[ {\begin{array}{*{20}{c}} 0\\ 1\\ { - 2}\\ 1 \end{array}} \right]\\ {\left( {1 - t} \right)^3} = \left[ {\begin{array}{*{20}{c}} 1\\ { - 3}\\ 3\\ { - 1} \end{array}} \right] \end{array}\]

Step-2: The augmented matrix
\[\begin{array}{l} M = \left[ {\begin{array}{*{20}{c}} 1&0&1&0\\ { - 2}&1&{ - 3}&0\\ 1&{ - 2}&3&0\\ 0&1&{ - 1}&0 \end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}} 1&0&1&0\\ 0&1&{ - 1}&0\\ 0&{ - 2}&2&0\\ 0&1&{ - 1}&0 \end{array}} \right]:\,\,\left\{ \begin{array}{l} {R_2} = {R_2} + 2{R_1}\\ {R_3} = {R_3} - {R_1} \end{array} \right\}\\ = \left[ {\begin{array}{*{20}{l}} 1&0&1&0\\ 0&1&{ - 1}&0\\ 0&0&0&0\\ 0&0&0&0 \end{array}} \right]:\,\,\left\{ \begin{array}{l} {R_3} = {R_3} + 2{R_2}\\ {R_4} = {R_4} - {R_2} \end{array} \right\} \end{array}\] From the matrix, we can see that there are three variables and two equations. Hence one free variables. Therefore,

The given set is linearly dependent