Step 1 of 2
Quisque eget sagittis purus. Nunc sagittis nisi magna, in mollis lectus ullamcorper in. Sed sodales risus sed arcu efficitur, id rutrum ligula laoreet. Quisque molestie purus sed consequat fermentum. Fusce ut lectus lobortis, viverra sem nec, rhoncus justo. Phasellus malesuada, ipsum ac varius euismod, purus nulla volutpat nunc, eu fermentum odio justo porttitor libero. Quisque viverra arcu nibh, at facilisis tortor ornare non. Etiam id porttitor arcu, ut eleifend nisi. Ut sit amet enim eu lacus egestas tristique eleifend sit amet lectus.
Step 2 of 2
Nam consectetur iaculis dui ac tempor. Nulla a nisi nunc. Suspendisse semper mauris pretium, suscipit sapien nec, hendrerit justo. In hac habitasse platea dictumst. Praesent laoreet gravida posuere. Maecenas interdum ante nec libero pellentesque, sit amet commodo nisl auctor. Phasellus facilisis, lorem et fringilla varius, mi felis rutrum diam, quis ultricies mauris nisl nec nisl. Fusce lacinia tincidunt urna sit amet vehicula. Proin sed dui vitae nisi vehicula imperdiet eu a lorem. Praesent at ante nibh. Quisque id elit ac purus vestibulum auctor. Etiam ac tincidunt velit. Aenean accumsan risus tempor tincidunt luctus.
Chapter 4.5, Problem 8E is solved.
Get Solutions
Given Information
We are given with a subspace
\[
\{ ( a , b , c , d ) : a - 3 b + c = 0 \}
\]
We have to find the basis and state the dimension
Step-1:
Write the condition in terms of $a$.
\[
\begin{aligned} a - 3 b + c & = 0 \\ a & = 3 b - c \end{aligned}
\]
The given set can be written in the parametric form.
\[
\begin{aligned} \mathbf { x } & = ( a , b , c , d ) \\ & = ( 3 b - c , b , c , d ) \\ & = ( 3 b , b , 0,0 ) + ( - c , 0 , c , 0 ) + ( 0,0,0 , d ) \\ & = b ( 3,1,0,0 ) + c ( - 1,0,1,0 ) + d ( 0,0,0,1 ) \end{aligned}
\]
So, the set can be written as:
\[S = \left\{ {{v_1} = \left[ {\begin{array}{*{20}{c}}
3\\
1\\
0\\
0
\end{array}} \right],\,{v_2} = \left[ {\begin{array}{*{20}{c}}
{ - 1}\\
0\\
1\\
0
\end{array}} \right],\,{v_3} = \left[ {\begin{array}{*{20}{c}}
{ - 1}\\
0\\
1\\
0
\end{array}} \right],\,} \right\}\]
Step-2: The augmented matrix
The augmented matrix for $Ax=0$
\[A = \left[ {\begin{array}{*{20}{c}}
3&{ - 1}&0\\
1&0&0\\
0&1&0\\
0&0&1
\end{array}} \right]\]
Step-3: The row-reduced augmented matrix
\[\begin{array}{l}
A = \left[ {\begin{array}{*{20}{c}}
3&{ - 1}&0\\
1&0&0\\
0&1&0\\
0&0&1
\end{array}} \right]\\
A = \left[ {\begin{array}{*{20}{c}}
3&{ - 1}&0\\
0&{\dfrac{1}{3}}&0\\
0&1&0\\
0&0&1
\end{array}} \right]::\,\,\left\{ {{R_2} = {R_2} - \dfrac{{{R_1}}}{3}} \right\}\\
A = \left[ {\begin{array}{*{20}{c}}
3&{ - 1}&0\\
0&{\dfrac{1}{3}}&0\\
0&0&0\\
0&0&1
\end{array}} \right]::\,\,\left\{ {{R_3} = {R_3} - 3{R_1}} \right\}
\end{array}\]
There are three equations and three pivot elements, hence the vectors are linearly independent Thus the vectors form a basis for H.
The $\{ (3,1,0,0),( - 1,0,1,0),(0,0,0,1)\} $ form a basis for H
Step-4: Dimension of the basis
The dimension of the vector space is the number of non-zero vectors present in basis for vector space. Hence
The dimension of the subspace S is 3