Step 1 of 2
Quisque eget sagittis purus. Nunc sagittis nisi magna, in mollis lectus ullamcorper in. Sed sodales risus sed arcu efficitur, id rutrum ligula laoreet. Quisque molestie purus sed consequat fermentum. Fusce ut lectus lobortis, viverra sem nec, rhoncus justo. Phasellus malesuada, ipsum ac varius euismod, purus nulla volutpat nunc, eu fermentum odio justo porttitor libero. Quisque viverra arcu nibh, at facilisis tortor ornare non. Etiam id porttitor arcu, ut eleifend nisi. Ut sit amet enim eu lacus egestas tristique eleifend sit amet lectus.
Step 2 of 2
Nam consectetur iaculis dui ac tempor. Nulla a nisi nunc. Suspendisse semper mauris pretium, suscipit sapien nec, hendrerit justo. In hac habitasse platea dictumst. Praesent laoreet gravida posuere. Maecenas interdum ante nec libero pellentesque, sit amet commodo nisl auctor. Phasellus facilisis, lorem et fringilla varius, mi felis rutrum diam, quis ultricies mauris nisl nec nisl. Fusce lacinia tincidunt urna sit amet vehicula. Proin sed dui vitae nisi vehicula imperdiet eu a lorem. Praesent at ante nibh. Quisque id elit ac purus vestibulum auctor. Etiam ac tincidunt velit. Aenean accumsan risus tempor tincidunt luctus.
Chapter 4.6, Problem 4E is solved.
Get Solutions
Step 1
Given Matrices:\[\begin{array}{l}A = \left[ {\begin{array}{*{20}{r}}1&1&{ - 3}&7&9&{ - 9}\\1&2&{ - 4}&{10}&{13}&{ - 12}\\1&{ - 1}&{ - 1}&1&1&{ - 3}\\1&{ - 3}&1&{ - 5}&{ - 7}&3\\1&{ - 2}&0&0&{ - 5}&{ - 4}\end{array}} \right],\\\\B = \left[ {\begin{array}{*{20}{r}}1&1&{ - 3}&7&9&{ - 9}\\0&1&{ - 1}&3&4&{ - 3}\\0&0&0&1&{ - 1}&{ - 2}\\0&0&0&0&0&0\\0&0&0&0&0&0\end{array}} \right]\end{array}\]We are given that the matrix A is row equivalent to B. We have to find the following entities:\[\begin{array}{l}\left( a \right)\,\,{\rm{rank}}\,\,A\\\left( b \right)\dim \,{\rm{NulA}}\\\left( c \right){\rm{Basis}}\,({\rm{Col}}\,A)\\\left( d \right){\rm{Basis}}\,({\rm{Row}}\,A)\\\left( e \right){\rm{Basis}}\,({\rm{NulA}})\end{array}\]
Step 2: $\left( a \right)\dim \,{\rm{rank A}}$
The dimension of rank(A) will be the number of pivot columns in A. The number of pivot columns in B are 3 so:\[{\rm{rank}}\,\,A\,\, = 3\]
Step 3: $\left( b \right)\dim \,{\rm{NulA}}$
From the Rank-Nullity Theorem the relation between rank of matrix, dimension of Null space and number of columns is given by:\[{\rm{rank}}\,\,A + \dim \,{\rm{NulA}} = n\]Using this we have:\[\begin{array}{l}\dim \,{\rm{NulA}} = n - {\rm{rank}}\,\,A\\ = 6 - 3\\ = 3\end{array}\]So, dimension of Null space of A is 3.
Step 4: $ \rm{(c)} {\rm{Basis}}\,({\rm{Col}}\,A)$
The basis of column space of A will be the pivot columns of matrix A. The matrix B is:\[B = \left[ {\begin{array}{*{20}{r}}1&1&{ - 3}&7&9&{ - 9}\\0&1&{ - 1}&3&4&{ - 3}\\0&0&0&1&{ - 1}&{ - 2}\\0&0&0&0&0&0\\0&0&0&0&0&0\end{array}} \right]\]As we can see that pivot columns of B are first two columns, thus basis of column space of A will be given by corresponding columns of A.\[{\rm{ Col }}A{\rm{ = }}\left\{ {\left[ {\begin{array}{*{20}{l}}1\\1\\1\\1\\1\end{array}} \right],\left[ {\begin{array}{*{20}{c}}1\\2\\{ - 1}\\{ - 3}\\{ - 2}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}7\\{10}\\1\\{ - 5}\\0\end{array}} \right]} \right\}\]
Step 5: $ \rm{(d)} \ {\rm{Basis}}\,({\rm{Row}}\,A)$
The basis of row space of A will be the pivot rows of matrix B. The matrix B is:\[B = \left[ {\begin{array}{*{20}{r}}1&1&{ - 3}&7&9&{ - 9}\\0&1&{ - 1}&3&4&{ - 3}\\0&0&0&1&{ - 1}&{ - 2}\\0&0&0&0&0&0\\0&0&0&0&0&0\end{array}} \right]\]As we can see that pivot rows of B are first three rows, thus basis of row space of A will be given by the rows of B.\[{\rm{Basis}}{\mkern 1mu} ({\rm{Row}}{\mkern 1mu} A) = \left\{ \begin{array}{l}(1,1, - 3,7,9, - 9),\\(0,1, - 1,3,4, - 3),\\(0,0,0,1, - 1, - 2)\end{array} \right\}\]
Step 6: $ \rm{(e)}{\rm{Basis}}\,({\rm{Nul}}\,A)$
To find the basis for Null space of A, we will solve the system of equations given by $A{\bf{x}} = 0$ (or $B{\bf{x}} = 0$). The solution will be written in parametric form. The basis for Null space will be given by the coefficient vectors of free variables. \[\begin{array}{*{20}{l}}{B{\bf{x}} = 0}\\{\left[ {\begin{array}{*{20}{r}}1&1&{ - 3}&7&9&{ - 9}\\0&1&{ - 1}&3&4&{ - 3}\\0&0&0&1&{ - 1}&{ - 2}\\0&0&0&0&0&0\\0&0&0&0&0&0\end{array}} \right]\left[ {\begin{array}{*{20}{l}}{{x_1}}\\{{x_2}}\\{{x_3}}\\{{x_4}}\\{{x_5}}\\{{x_6}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}0\\0\\0\\0\\0\end{array}} \right]}\end{array}\]The Augmented matrix:\[M = \left[ {\begin{array}{*{20}{r}}1&1&{ - 3}&7&9&{ - 9}\\0&1&{ - 1}&3&4&{ - 3}\\0&0&0&1&{ - 1}&{ - 2}\\0&0&0&0&0&0\\0&0&0&0&0&0\end{array}\begin{array}{*{20}{c}}{}\\{}\\{}\\{}\\{}\end{array}\begin{array}{*{20}{c}}0\\0\\0\\0\\0\end{array}} \right]\]
Step 7: System of Equations
The system of equations are
\[\begin{array}{r}x_{1}-2 x_{3}+9 x_{5}+2 x_{6}=0 \\x_{2}-x_{3}+7 x_{5}+3 x_{6}=0 \\x_{4}-x_{5}-2 x_{6}=0\end{array}\]Using $x_3$, $x_5$ and $x_6$ as free variables
\[\begin{array}{*{20}{l}}{{x_1} = 2{x_3} - 9{x_5} - 2{x_6}}\\{{x_2} = {x_3} - 7{x_5} - 3{x_6}}\\{{x_3} = {x_3}}\\{{x_4} = {x_5} + 2{x_6}}\\{{x_5} = {x_5}}\\{{x_6} = {x_6}}\end{array}\]
Step 8: System of Equations
We can write the solution in parametric form:\[\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3} \\x_{4} \\x_{5} \\x_{6}\end{array}\right]=\left[\begin{array}{l}2 \\1 \\1 \\0 \\0 \\0\end{array}\right] x_{3}+\left[\begin{array}{c}-9 \\-7 \\0 \\1 \\1 \\0\end{array}\right] x_{5}+\left[\begin{array}{c}-2 \\-3 \\0 \\2 \\0 \\1\end{array}\right] x_{6}\]
Null Space
So, the Null space is
\[{\bf{NulA}} = \left\{ {\left[ {\begin{array}{*{20}{l}}2\\1\\1\\0\\0\\0\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 9}\\{ - 7}\\0\\1\\1\\0\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - 2}\\{ - 3}\\0\\2\\0\\1\end{array}} \right]} \right\}\]