Linear Algebra and Its Applications, 5th Edition

Linear Algebra and Its Applications, 5th Edition

Authors: David C. Lay, Steven R. Lay, Judi J. McDonald

ISBN-13: 978-0321982384

We have solutions for your book!

See our solution for Question 25E from Chapter 8.1 from Lay's Linear Algebra and Its Applications, 5th Edition.

Problem 25E

Chapter:
Problem:
0

Step-by-Step Solution

Given Information
We have to prove that \[\operatorname { aff } ( A \cap B ) \subset ( \operatorname { aff } A \cap \operatorname { aff } B )\]

Step-1:
Let,\[\mathbf { x } , \mathbf { y } \in A \cap B\]Then, \[\mathbf { x } , \mathbf { y } \in A \text { and } \mathbf { x } , \mathbf { y } \in B\]

Step-2:
By the definition of affine set A\[( 1 - t ) \mathbf { x } + t \mathbf { y } \in \operatorname { aff } A\]By the definition of affine set B\[( 1 - t ) \mathbf { x } + t \mathbf { y } \in \operatorname { aff } B\]By combining both: \[( 1 - t ) \mathbf { x } + t \mathbf { y } \in ( \operatorname { aff } A \cap \operatorname { aff } \mathbf { B } )\] Hence, \[( 1 - t ) \mathbf { x } + t \mathbf { y } \in \operatorname { aff } ( A \cap B ) \Rightarrow ( 1 - t ) \mathbf { x } + t \mathbf { y } \in ( \operatorname { aff } A \cap \operatorname { aff } B )\]Therefore,

\[\operatorname { aff } ( A \cap B ) \subset ( \operatorname { aff } A \cap \operatorname { aff } B )\]